3D Convolutional Neural Networks for Ultrasound-Based Silent Speech Interfaces

04/23/2021
by   László Tóth, et al.
0

Silent speech interfaces (SSI) aim to reconstruct the speech signal from a recording of the articulatory movement, such as an ultrasound video of the tongue. Currently, deep neural networks are the most successful technology for this task. The efficient solution requires methods that do not simply process single images, but are able to extract the tongue movement information from a sequence of video frames. One option for this is to apply recurrent neural structures such as the long short-term memory network (LSTM) in combination with 2D convolutional neural networks (CNNs). Here, we experiment with another approach that extends the CNN to perform 3D convolution, where the extra dimension corresponds to time. In particular, we apply the spatial and temporal convolutions in a decomposed form, which proved very successful recently in video action recognition. We find experimentally that our 3D network outperforms the CNN+LSTM model, indicating that 3D CNNs may be a feasible alternative to CNN+LSTM networks in SSI systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset