3D U-NetR: Low Dose Computed Tomography Reconstruction via Deep Learning and 3 Dimensional Convolutions

05/28/2021
by   Doga Gunduzalp, et al.
0

In this paper, we introduced a novel deep learning based reconstruction technique using the correlations of all 3 dimensions with each other by taking into account the correlation between 2-dimensional low-dose CT images. Sparse or noisy sinograms are back projected to the image domain with FBP operation, then denoising process is applied with a U-Net like 3 dimensional network called 3D U-NetR. Proposed network is trained with synthetic and real chest CT images, and 2D U-Net is also trained with the same dataset to prove the importance of the 3rd dimension. Proposed network shows better quantitative performance on SSIM and PSNR. More importantly, 3D U-NetR captures medically critical visual details that cannot be visualized by 2D network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro