A Bayesian spatio-temporal abundance model for surveillance of the opioid epidemic

01/04/2021
by   Staci A. Hepler, et al.
0

Opioid misuse is a national epidemic and a significant drug related threat to the United States. While the scale of the problem is undeniable, estimates of the local prevalence of opioid misuse are lacking, despite their importance to policy-making and resource allocation. This is due, in part, to the challenge of directly measuring opioid misuse at a local level. In this paper, we develop a Bayesian hierarchical spatio-temporal abundance model that integrates indirect county-level data on opioid overdose deaths and treatment admissions with state-level survey estimates on prevalence of opioid misuse to estimate the latent county-level prevalence and counts of people who misuse opioids. A simulation study shows that our joint model accurately recovers the latent counts and prevalence and thus overcomes known limitations with identifiability in abundance models with non-replicated observations. We apply our model to county-level surveillance data from the state of Ohio. Our proposed framework can be applied to other applications of small area estimation for hard to reach populations, which is a common occurrence with many health conditions such as those related to illicit behaviors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset