A Bayesian State-Space Approach to Mapping Directional Brain Networks

12/21/2020
by   Huazhang Li, et al.
0

The human brain is a directional network system of brain regions involving directional connectivity. Seizures are a directional network phenomenon as abnormal neuronal activities start from a seizure onset zone (SOZ) and propagate to otherwise healthy regions. To localize the SOZ of an epileptic patient, clinicians use iEEG to record the patient's intracranial brain activity in many small regions. iEEG data are high-dimensional multivariate time series. We build a state-space multivariate autoregression (SSMAR) for iEEG data to model the underlying directional brain network. To produce scientifically interpretable network results, we incorporate into the SSMAR the scientific knowledge that the underlying brain network tends to have a cluster structure. Specifically, we assign to the SSMAR parameters a stochastic-blockmodel-motivated prior, which reflects the cluster structure. We develop a Bayesian framework to estimate the SSMAR, infer directional connections, and identify clusters for the unobserved network edges. The new method is robust to violations of model assumptions and outperforms existing network methods. By applying the new method to an epileptic patient's iEEG data, we reveal seizure initiation and propagation in the patient's brain network. Our method can also accurately localize the SOZ. Overall, this paper provides a tool to study the human brain network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset