A BDF2-Semismooth Newton Algorithm for the Numerical Solution of the Bingham Flow with Temperature Dependent Parameters

04/06/2020
by   Sergio Gonzalez-Andrade, et al.
0

This paper is devoted to the numerical solution of the non-isothermal instationary Bingham flow with temperature dependent parameters by semismooth Newton methods. We discuss the main theoretical aspects regarding this problem. Mainly, we focus on existence of solutions and a multiplier formulation which leads us to a coupled system of PDEs involving a Navier-Stokes type equation and a parabolic energy PDE. Further, we propose a Huber regularization for this coupled system of partial differential equations, and we briefly discuss the well posedness of these regularized problems. A detailed finite element discretization, based on the so called (cross-grid P_1) - Q_0 elements, is proposed for the space variable, involving weighted stiffness and mass matrices. After discretization in space, a second order BDF method is used as a time advancing technique, leading, in each time iteration, to a nonsmooth system of equations, which is suitable to be solved by a semismooth Newton algorithm. Therefore, we propose and discuss the main properties of a SSN algorithm, including the convergence properties. The paper finishes with two computational experiment that exhibit the main properties of the numerical approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset