A Capacity-Price Game for Uncertain Renewables Resources

04/17/2018
by   Pan Li, et al.
0

Renewable resources are starting to constitute a growing portion of the total generation mix of the power system. A key difference between renewables and traditional generators is that many renewable resources are managed by individuals, especially in the distribution system. In this paper, we study the capacity investment and pricing problem, where multiple renewable producers compete in a decentralized market. It is known that most deterministic capacity games tend to result in very inefficient equilibria, even when there are a large number of similar players. In contrast, we show that due to the inherent randomness of renewable resources, the equilibria in our capacity game becomes efficient as the number of players grows and coincides with the centralized decision from the social planner's problem. This result provides a new perspective on how to look at the positive influence of randomness in a game framework as well as its contribution to resource planning, scheduling, and bidding. We validate our results by simulation studies using real world data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset