A Category Space Approach to Supervised Dimensionality Reduction
Supervised dimensionality reduction has emerged as an important theme in the last decade. Despite the plethora of models and formulations, there is a lack of a simple model which aims to project the set of patterns into a space defined by the classes (or categories). To this end, we set up a model in which each class is represented as a 1D subspace of the vector space formed by the features. Assuming the set of classes does not exceed the cardinality of the features, the model results in multi-class supervised learning in which the features of each class are projected into the class subspace. Class discrimination is automatically guaranteed via the imposition of orthogonality of the 1D class sub-spaces. The resulting optimization problem - formulated as the minimization of a sum of quadratic functions on a Stiefel manifold - while being non-convex (due to the constraints), nevertheless has a structure for which we can identify when we have reached a global minimum. After formulating a version with standard inner products, we extend the formulation to reproducing kernel Hilbert spaces in a straightforward manner. The optimization approach also extends in a similar fashion to the kernel version. Results and comparisons with the multi-class Fisher linear (and kernel) discriminants and principal component analysis (linear and kernel) showcase the relative merits of this approach to dimensionality reduction.
READ FULL TEXT