A Central Limit Theorem for Classical Multidimensional Scaling

04/02/2018
by   Gongkai Li, et al.
0

Classical multidimensional scaling (CMDS) is a widely used method in manifold learning. It takes in a dissimilarity matrix and outputs a coordinate matrix based on a spectral decomposition. However, there are not yet any statistical results characterizing the performance ofCMDS under randomness, such as perturbation analysis when the objects are sampled from a probabilistic model. In this paper, we present such an analysis given that the objects are sampled from a suitable distribution. In particular, we show that the resulting embedding gives rise to a central limit theorem for noisy dissimilarity measurements, and provide compelling simulation and real data illustration of this CLT for CMDS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset