A characteristic mapping method for incompressible hydrodynamics on a rotating sphere
The characteristic mapping method uses a computational framework for non-linear advection capable of resolving fine scale fluid phenomena without the necessity of increasing the resolution of the computational grid. By approximating the inverse flow map generated by a velocity field as a composition of submaps, the method generates a discretization with an exponentially increasing polynomial degree of approximation using only a linear increase in the degrees of freedom. This functional spatio-temporal discretization has the capacity of accurately and sparsely representing fine scales globally, substituting the effects of spatial refinement with the operation of composition. As a step towards the application of these techniques to geophysical fluid phenomena, we present a characteristic mapping method for the rotating barotropic vorticity equations. The method is verified using standard test cases demonstrating third-order accuracy in the supremum norm. Numerical experiments illustrating the ability to reproduce the direct energy cascade at finer scales than the computational grid are provided.
READ FULL TEXT