A Chi-square Goodness-of-Fit Test for Continuous Distributions against a known Alternative

05/06/2020
by   Wolfgang Rolke, et al.
0

The chi square goodness-of-fit test is among the oldest known statistical tests, first proposed by Pearson in 1900 for the multinomial distribution. It has been in use in many fields ever since. However, various studies have shown that when applied to data from a continuous distribution it is generally inferior to other methods such as the Kolmogorov-Smirnov or Anderson-Darling tests. However, the performance, that is the power, of the chi square test depends crucially on the way the data is binned. In this paper we describe a method that automatically finds a binning that is very good against a specific alternative. We show that then the chi square test is generally competitive and sometimes even superior to other standard tests.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset