A CLT for the difference of eigenvalue statistics of sample covariance matrices
In the case where the dimension of the data grows at the same rate as the sample size we prove a central limit theorem for the difference of a linear spectral statistic of the sample covariance and a linear spectral statistic of the matrix that is obtained from the sample covariance matrix by deleting a column and the corresponding row. Unlike previous works, we do neither require that the population covariance matrix is diagonal nor that moments of all order exist. Our proof methodology incorporates subtle enhancements to existing strategies, which meet the challenges introduced by determining the mean and covariance structure for the difference of two such eigenvalue statistics. Moreover, we also establish the asymptotic independence of the difference-type spectral statistic and the usual linear spectral statistic of sample covariance matrices.
READ FULL TEXT