A Computation and Communication Efficient Method for Distributed Nonconvex Problems in the Partial Participation Setting
We present a new method that includes three key components of distributed optimization and federated learning: variance reduction of stochastic gradients, compressed communication, and partial participation. We prove that the new method has optimal oracle complexity and state-of-the-art communication complexity in the partial participation setting. Moreover, we observe that "1 + 1 + 1 is not 3": by mixing variance reduction of stochastic gradients with compressed communication and partial participation, we do not obtain a fully synergetic effect. We explain the nature of this phenomenon, argue that this is to be expected, and propose possible workarounds.
READ FULL TEXT