A Conceptual Trust Management Framework under Uncertainty for Smart Vehicular Networks
Trust is a fundamental concept in large-scale distributed systems like the Internet of Things (IoT). Trust helps to resolve choices into a decision. However, the trust calculation depends on the amount of uncertainty present in data sources. Trust in an IoT network is proportional to the amount of uncertainty generated by such sources as hardware malfunctions, network stability, adversarial issues, and the nature of data exchanged between the entities. The relationship between trust and uncertainty warrants approaches designed to maximize the former quality whilst minimizing the latter. Unfortunately, there is no consensus on an approach to ensure the trustworthiness of IoT networks, in particular, addressing the uncertainty issues in a fine-grained way. This paper aims to explore a generalized framework designed to manage trust in IoT networks of varying scales. In the proposed framework, several sources of uncertainty are expressed as quantities, trust ratings are calculated for individual entities in an IoT network, and a network model capable of effectively distributing workloads to trustworthy nodes is proposed. We consider a practical use case of smart vehicular networks. By realizing this paper, a standardized approach to building trustworthy IoT networks can be established, which can further guide subsequent works in the field of trust management under uncertainty.
READ FULL TEXT