A Conglomerate of Multiple OCR Table Detection and Extraction

10/16/2020
by   Smita Pallavi, et al.
0

Information representation as tables are compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used, however industry still faces challenge in detecting and extracting tables from OCR documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition and procedural coding to identify distinct tables in same image and map the text to appropriate corresponding cell in dataframe which can be stored as Comma-separated values, Database, Excel and multiple other usable formats.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset