A CS guide to the quantum singular value transformation
We present a simplified exposition of some pieces of [Gilyén, Su, Low, and Wiebe, STOC'19, arXiv:1806.01838], who introduced a quantum singular value transformation (QSVT) framework for applying polynomial functions to block-encoded matrices. The QSVT framework has garnered substantial recent interest from the quantum algorithms community, as it was demonstrated by [GSLW19] to encapsulate many existing algorithms naturally phrased as an application of a matrix function. First, we posit that the lifting of quantum singular processing (QSP) to QSVT is better viewed not through Jordan's lemma (as was suggested by [GSLW19]) but as an application of the cosine-sine decomposition, which can be thought of as a more explicit and stronger version of Jordan's lemma. Second, we demonstrate that the constructions of bounded polynomial approximations given in [GSLW19], which use a variety of ad hoc approaches drawing from Fourier analysis, Chebyshev series, and Taylor series, can be unified under the framework of truncation of Chebyshev series, and indeed, can in large part be matched via a bounded variant of a standard meta-theorem from [Trefethen, 2013]. We hope this work finds use to the community as a companion guide for understanding and applying the powerful framework of [GSLW19].
READ FULL TEXT