A Data-centric Framework for Improving Domain-specific Machine Reading Comprehension Datasets

04/02/2023
by   Iva Bojic, et al.
5

Low-quality data can cause downstream problems in high-stakes applications. Data-centric approach emphasizes on improving dataset quality to enhance model performance. High-quality datasets are needed for general-purpose Large Language Models (LLMs) training, as well as for domain-specific models, which are usually small in size as it is costly to engage a large number of domain experts for their creation. Thus, it is vital to ensure high-quality domain-specific training data. In this paper, we propose a framework for enhancing the data quality of original datasets. We applied the proposed framework to four biomedical datasets and showed relative improvement of up to 33 using back translation to enhance the original dataset quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset