A data-driven approach for the closure of RANS models by the divergence of the Reynolds Stress Tensor
In the present paper a new data-driven model to close and increase accuracy of RANS equations is proposed. It is based on the direct approximation of the divergence of the Reynolds Stress Tensor (RST) through a Neural Network (NN). This choice is driven by the presence of the divergence of RST in the RANS equations. Furthermore, once this data-driven approach is trained, there is no need to run any turbulence model to close the equations. Finally, it is well known that a good approximation of a function it is not necessarily a good approximation of its derivative. The architecture and inputs choices of the proposed network guarantee both Galilean and coordinates-frame rotation invariances by looking to a vector basis expansion of the divergence of the RST. Two well-known test cases are used to show advantages of the proposed method compared to classic turbulence models.
READ FULL TEXT