A Dense Material Segmentation Dataset for Indoor and Outdoor Scene Parsing

07/21/2022
by   Paul Upchurch, et al.
0

A key algorithm for understanding the world is material segmentation, which assigns a label (metal, glass, etc.) to each pixel. We find that a model trained on existing data underperforms in some settings and propose to address this with a large-scale dataset of 3.2 million dense segments on 44,560 indoor and outdoor images, which is 23x more segments than existing data. Our data covers a more diverse set of scenes, objects, viewpoints and materials, and contains a more fair distribution of skin types. We show that a model trained on our data outperforms a state-of-the-art model across datasets and viewpoints. We propose a large-scale scene parsing benchmark and baseline of 0.729 per-pixel accuracy, 0.585 mean class accuracy and 0.420 mean IoU across 46 materials.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro