A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black-Scholes model
The Black-Scholes (B-S) equation has been recently extended as a kind of tempered time-fractional B-S equations, which become an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B-S model. To achieve high-order accuracy in space and overcome the weak initial singularity of the solution, we combine the compact operator with a tempered L1 approximation with nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditional stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.
READ FULL TEXT