A Formal Model for Secure Multiparty Computation
Although Secure Multiparty Computation (SMC) has seen considerable development in recent years, its use is challenging, resulting in complex code which obscures whether the security properties or correctness guarantees hold in practice. For this reason, several works have investigated the use of formal methods to provide guarantees for SMC systems. However, these approaches have been applied mostly to domain specific languages (DSL), neglecting general-purpose approaches. In this paper, we consider a formal model for an SMC system for annotated C programs. We choose C due to its popularity in the cryptographic community and being the only general-purpose language for which SMC compilers exist. Our formalization supports all key features of C – including private-conditioned branching statements, mutable arrays (including out of bound array access), pointers to private data, etc. We use this formalization to characterize correctness and security properties of annotated C, with the latter being a form of non-interference on execution traces. We realize our formalism as an implementation in the PICCO SMC compiler and provide evaluation results on SMC programs written in C.
READ FULL TEXT