A Formal Privacy Framework for Partially Private Data
Despite its many useful theoretical properties, differential privacy (DP) has one substantial blind spot: any release that non-trivially depends on confidential data without additional privacy-preserving randomization fails to satisfy DP. Such a restriction is rarely met in practice, as most data releases under DP are actually "partially private" data (PPD). This poses a significant barrier to accounting for privacy risk and utility under logistical constraints imposed on data curators, especially those working with official statistics. In this paper, we propose a privacy definition which accommodates PPD and prove it maintains similar properties to standard DP. We derive optimal transport-based mechanisms for releasing PPD that satisfy our definition and algorithms for valid statistical inference using PPD, demonstrating their improved performance over post-processing methods. Finally, we apply these methods to a case study on US Census and CDC PPD to investigate private COVID-19 infection rates. In doing so, we show how data curators can use our framework to overcome barriers to operationalizing formal privacy while providing more transparency and accountability to users.
READ FULL TEXT