A Framework using Contrastive Learning for Classification with Noisy Labels

04/19/2021
by   Madalina Ciortan, et al.
0

We propose a framework using contrastive learning as a pre-training task to perform image classification in the presence of noisy labels. Recent strategies such as pseudo-labeling, sample selection with Gaussian Mixture models, weighted supervised contrastive learning have been combined into a fine-tuning phase following the pre-training. This paper provides an extensive empirical study showing that a preliminary contrastive learning step brings a significant gain in performance when using different loss functions: non-robust, robust, and early-learning regularized. Our experiments performed on standard benchmarks and real-world datasets demonstrate that: i) the contrastive pre-training increases the robustness of any loss function to noisy labels and ii) the additional fine-tuning phase can further improve accuracy but at the cost of additional complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro