A Fully Automated Latent Fingerprint Matcher with Embedded Self-learning Segmentation Module
Latent fingerprint has the practical value to identify the suspects who have unintentionally left a trace of fingerprint in the crime scenes. However, designing a fully automated latent fingerprint matcher is a very challenging task as it needs to address many challenging issues including the separation of overlapping structured patterns over the partial and poor quality latent fingerprint image, and finding a match against a large background database that would have different resolutions. Currently there is no fully automated latent fingerprint matcher available to the public and most literature reports have utilized a specialized latent fingerprint matcher COTS3 which is not accessible to the public. This will make it infeasible to assess and compare the relevant research work which is vital for this research community. In this study, we target to develop a fully automated latent matcher for adaptive detection of the region of interest and robust matching of latent prints. Unlike the manually conducted matching procedure, the proposed latent matcher can run like a sealed black box without any manual intervention. This matcher consists of the following two modules: (i) the dictionary learning-based region of interest (ROI) segmentation scheme; and (ii) the genetic algorithm-based minutiae set matching unit. Experimental results on NIST SD27 latent fingerprint database demonstrates that the proposed matcher outperforms the currently public state-of-art latent fingerprint matcher.
READ FULL TEXT