A Gap Analysis of Low-Cost Outdoor Air Quality Sensor In-Field Calibration
In recent years, interest in monitoring air quality has been growing. Traditional environmental monitoring stations are very expensive, both to acquire and to maintain, therefore their deployment is generally very sparse. This is a problem when trying to generate air quality maps with a fine spatial resolution. Given the general interest in air quality monitoring, low-cost air quality sensors have become an active area of research and development. Low-cost air quality sensors can be deployed at a finer level of granularity than traditional monitoring stations. Furthermore, they can be portable and mobile. Low-cost air quality sensors, however, present some challenges: they suffer from cross-sensitivities between different ambient pollutants; they can be affected by external factors such as traffic, weather changes, and human behavior; and their accuracy degrades over time. Some promising machine learning approaches can help us obtain highly accurate measurements with low-cost air quality sensors. In this article, we present low-cost sensor technologies, and we survey and assess machine learning-based calibration techniques for their calibration. We conclude by presenting open questions and directions for future research.
READ FULL TEXT