A Gibbs sampler for a class of random convex polytopes

10/25/2019
by   Pierre E. Jacob, et al.
0

We present a Gibbs sampler to implement the Dempster-Shafer (DS) theory of statistical inference for Categorical distributions with arbitrary numbers of categories and observations. The DS framework is trademarked by its three-valued uncertainty assessment (p,q,r), probabilities "for"', "against", and "don't know", associated with formal assertions of interest. The proposed algorithm targets the invariant distribution of a class of random convex polytopes which encapsulate the inference, via establishing an equivalence between the iterative constraints of the vertex configuration and the non-negativity of cycles in a fully connected directed graph. The computational cost increases with the size of the input, linearly with the number of observations and polynomially in the number of non-empty categories. Illustrations of numerical examples include the testing of independence in 2 by 2 contingency tables and parameter estimation of the linkage model. Results are compared to alternative methods of Categorical inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset