A High-dimensional Convergence Theorem for U-statistics with Applications to Kernel-based Testing

02/11/2023
by   Kevin H. Huang, et al.
0

We prove a convergence theorem for U-statistics of degree two, where the data dimension d is allowed to scale with sample size n. We find that the limiting distribution of a U-statistic undergoes a phase transition from the non-degenerate Gaussian limit to the degenerate limit, regardless of its degeneracy and depending only on a moment ratio. A surprising consequence is that a non-degenerate U-statistic in high dimensions can have a non-Gaussian limit with a larger variance and asymmetric distribution. Our bounds are valid for any finite n and d, independent of individual eigenvalues of the underlying function, and dimension-independent under a mild assumption. As an application, we apply our theory to two popular kernel-based distribution tests, MMD and KSD, whose high-dimensional performance has been challenging to study. In a simple empirical setting, our results correctly predict how the test power at a fixed threshold scales with d and the bandwidth.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset