A hybridizable discontinuous Galerkin method for the coupled Navier-Stokes and Darcy problem
We present and analyze a strongly conservative hybridizable discontinuous Galerkin finite element method for the coupled incompressible Navier-Stokes and Darcy problem with Beavers-Joseph-Saffman interface condition. An a priori error analysis shows that the velocity error does not depend on the pressure, and that velocity and pressure converge with optimal rates. These results are confirmed by numerical examples.
READ FULL TEXT