A Jointly Learned Context-Aware Place of Interest Embedding for Trip Recommendations

08/24/2018
by   Jiayuan He, et al.
0

Trip recommendation is an important location-based service that helps relieve users from the time and efforts for trip planning. It aims to recommend a sequence of places of interest (POIs) for a user to visit that maximizes the user's satisfaction. When adding a POI to a recommended trip, it is essential to understand the context of the recommendation, including the POI popularity, other POIs co-occurring in the trip, and the preferences of the user. These contextual factors are learned separately in existing studies, while in reality, they impact jointly on a user's choice of a POI to visit. In this study, we propose a POI embedding model to jointly learn the impact of these contextual factors. We call the learned POI embedding a context-aware POI embedding. To showcase the effectiveness of this embedding, we apply it to generate trip recommendations given a user and a time budget. We propose two trip recommendation algorithms based on our context-aware POI embedding. The first algorithm finds the exact optimal trip by transforming and solving the trip recommendation problem as an integer linear programming problem. To achieve a high computation efficiency, the second algorithm finds a heuristically optimal trip based on adaptive large neighborhood search. We perform extensive experiments on real datasets. The results show that our proposed algorithms consistently outperform state-of-the-art algorithms in trip recommendation quality, with an advantage of up to 43

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset