A Language-Agnostic Model for Semantic Source Code Labeling
Code search and comprehension have become more difficult in recent years due to the rapid expansion of available source code. Current tools lack a way to label arbitrary code at scale while maintaining up-to-date representations of new programming languages, libraries, and functionalities. Comprehensive labeling of source code enables users to search for documents of interest and obtain a high-level understanding of their contents. We use Stack Overflow code snippets and their tags to train a language-agnostic, deep convolutional neural network to automatically predict semantic labels for source code documents. On Stack Overflow code snippets, we demonstrate a mean area under ROC of 0.957 over a long-tailed list of 4,508 tags. We also manually validate the model outputs on a diverse set of unlabeled source code documents retrieved from Github, and we obtain a top-1 accuracy of 86.6 the model successfully transfers its knowledge from Stack Overflow snippets to arbitrary source code documents.
READ FULL TEXT