A Large-Scale Study of Language Models for Chord Prediction

04/05/2018
by   Filip Korzeniowski, et al.
0

We conduct a large-scale study of language models for chord prediction. Specifically, we compare N-gram models to various flavours of recurrent neural networks on a comprehensive dataset comprising all publicly available datasets of annotated chords known to us. This large amount of data allows us to systematically explore hyper-parameter settings for the recurrent neural networks---a crucial step in achieving good results with this model class. Our results show not only a quantitative difference between the models, but also a qualitative one: in contrast to static N-gram models, certain RNN configurations adapt to the songs at test time. This finding constitutes a further step towards the development of chord recognition systems that are more aware of local musical context than what was previously possible.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset