A Meta-Learning Approach for Software Refactoring
Software refactoring is the process of changing the structure of software without any alteration in its behavior and functionality. Presuming it is carried out in appropriate opportunities, refactoring enhances software quality characteristics such as maintainability and extensibility. Thus far, various studies have addressed the problem of detecting proper opportunities for refactoring. Most of them are based on human expertise and are prone to error and non-meticulous. Fortunately, in recent efforts, machine learning methods have produced outstanding results in finding appropriate opportunities for refactoring. Sad to say, Machine learning methods mostly need plenty of data and, consequently, long processing time. Furthermore, there needs to be more annotated data for many types of refactoring, and data collection is time-consuming and costly. Accordingly, in this paper, we have formulated the problem of detecting appropriate opportunities for refactoring as a few-shot classification problem. We have utilized model-agnostic meta-learning (MAML), a recognized meta-learning algorithm, to learn a neural network on tasks from high-resource data. The trained model, then, is adapted to a model with high accuracy for tasks from low-resource data. Experimental results revealed 91 accuracy, which illustrates the effectiveness and competitiveness of our proposed meta-learning model.
READ FULL TEXT