A Modal Characterization Theorem for a Probabilistic Fuzzy Description Logic

05/31/2019
by   Paul Wild, et al.
0

The fuzzy modality `probably` is interpreted over probabilistic type spaces by taking expected truth values. The arising probabilistic fuzzy description logic is invariant under probabilistic bisimilarity; more informatively, it is non-expansive wrt. a suitable notion of behavioural distance. In the present paper, we provide a characterization of the expressive power of this logic based on this observation: We prove a probabilistic analogue of the classical van Benthem theorem, which states that modal logic is precisely the bisimulation-invariant fragment of first-order logic. Specifically, we show that every formula in probabilistic fuzzy first-order logic that is non-expansive wrt. behavioural distance can be approximated by concepts of bounded rank in probabilistic fuzzy description logic. For a modal logic perspective on the same result, see arXiv:1810.04722.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset