A Model-Based, Decision-Theoretic Perspective on Automated Cyber Response

02/20/2020
by   Lashon B. Booker, et al.
0

Cyber-attacks can occur at machine speeds that are far too fast for human-in-the-loop (or sometimes on-the-loop) decision making to be a viable option. Although human inputs are still important, a defensive Artificial Intelligence (AI) system must have considerable autonomy in these circumstances. When the AI system is model-based, its behavior responses can be aligned with risk-aware cost/benefit tradeoffs that are defined by user-supplied preferences that capture the key aspects of how human operators understand the system, the adversary and the mission. This paper describes an approach to automated cyber response that is designed along these lines. We combine a simulation of the system to be defended with an anytime online planner to solve cyber defense problems characterized as partially observable Markov decision problems (POMDPs).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset