A moving-boundary model of reactive settling in wastewater treatment. Part 2: Numerical scheme

12/05/2021
by   Raimund Bürger, et al.
0

A numerical scheme is proposed for the simulation of reactive settling in sequencing batch reactors (SBRs) in wastewater treatment plants. Reactive settling is the process of sedimentation of flocculated particles (biomass; activated sludge) consisting of several material components that react with substrates dissolved in the fluid. An SBR is operated in cycles of consecutive fill, react, settle, draw and idle stages, which means that the volume in the tank varies and the surface moves with time. The process is modelled by a system of spatially one-dimensional, nonlinear, strongly degenerate parabolic convection-diffusion-reaction equations. This system is coupled via conditions of mass conservation to transport equations on a half line whose origin is located at a moving boundary and that models the effluent pipe. A finite-difference scheme is proved to satisfy an invariant-region property (in particular, it is positivity preserving) if executed in a simple splitting way. Simulations are presented with a modified variant of the established activated sludge model no. 1 (ASM1).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset