A Multi-threshold Segmentation Approach Based on Artificial Bee Colony Optimization

05/28/2014
by   Erik Cuevas, et al.
0

This paper explores the use of the Artificial Bee Colony (ABC) algorithm to compute threshold selection for image segmentation. ABC is a heuristic algorithm motivated by the intelligent behavior of honey-bees which has been successfully employed to solve complex optimization problems. In this approach, an image 1D histogram is approximated through a Gaussian mixture model whose parameters are calculated by the ABC algorithm. For the approximation scheme, each Gaussian function represents a pixel class and therefore a threshold. Unlike the Expectation Maximization (EM) algorithm, the ABC based method shows fast convergence and low sensitivity to initial conditions. Remarkably, it also improves complex time consuming computations commonly required by gradient-based methods. Experimental results demonstrate the algorithms ability to perform automatic multi threshold selection yet showing interesting advantages by comparison to other well known algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset