A multi-view approach for Mandarin non-native mispronunciation verification

09/05/2020
by   Zhenyu Wang, et al.
0

Traditionally, the performance of non-native mispronunciation verification systems relied on effective phone-level labelling of non-native corpora. In this study, a multi-view approach is proposed to incorporate discriminative feature representations which requires less annotation for non-native mispronunciation verification of Mandarin. Here, models are jointly learned to embed acoustic sequence and multi-source information for speech attributes and bottleneck features. Bidirectional LSTM embedding models with contrastive losses are used to map acoustic sequences and multi-source information into fixed-dimensional embeddings. The distance between acoustic embeddings is taken as the similarity between phones. Accordingly, examples of mispronounced phones are expected to have a small similarity score with their canonical pronunciations. The approach shows improvement over GOP-based approach by +11.23 mispronunciation verification task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset