A multiplicity-preserving crossover operator on graphs. Extended version

08/23/2022
by   Henri Thölke, et al.
0

Evolutionary algorithms usually explore a search space of solutions by means of crossover and mutation. While a mutation consists of a small, local modification of a solution, crossover mixes the genetic information of two solutions to compute a new one. For model-driven optimization (MDO), where models directly serve as possible solutions (instead of first transforming them into another representation), only recently a generic crossover operator has been developed. Using graphs as a formal foundation for models, we further refine this operator in such a way that additional well-formedness constraints are preserved: We prove that, given two models that satisfy a given set of multiplicity constraints as input, our refined crossover operator computes two new models as output that also satisfy the set of constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset