A new class of nonparametric tests for second-order stochastic dominance based on the Lorenz P-P plot
Given samples from two non-negative random variables, we propose a new class of nonparametric tests for the null hypothesis that one random variable dominates the other with respect to second-order stochastic dominance. These tests are based on the Lorenz P-P plot (LPP), which is the composition between the inverse unscaled Lorenz curve of one distribution and the unscaled Lorenz curve of the other. The LPP exceeds the identity function if and only if the dominance condition is violated, providing a rather simple method to construct test statistics, given by functionals defined over the difference between the identity and the LPP. We determine a stochastic upper bound for such test statistics under the null hypothesis, and derive its limit distribution, to be approximated via bootstrap procedures. We also establish the asymptotic validity of the tests under relatively mild conditions, allowing for both dependent and independent samples. Finally, finite sample properties are investigated through simulation studies.
READ FULL TEXT