A new deflation criterion for the QZ algorithm

08/03/2022
by   Thijs Steel, et al.
0

The QZ algorithm computes the Schur form of a matrix pencil. It is an iterative algorithm and at some point, it must decide that an eigenvalue has converged and move on with another one. Choosing a criterion that makes this decision is nontrivial. If it is too strict, the algorithm might waste iterations on already converged eigenvalues. If it is not strict enough, the computed eigenvalues might be inaccurate. Additionally, the criterion should not be computationally expensive to evaluate. This paper introduces a new criterion based on the size of and the gap between the eigenvalues. This is similar to the work of Ahues and Tissuer for the QR algorithm. Theoretical arguments and numerical experiments suggest that it outperforms the most popular criteria in terms of accuracy. Additionally, this paper evaluates some commonly used criteria for infinite eigenvalues.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset