A new displacement-controlled arc-length method for damage mechanics problems

08/26/2023
by   Roshan Philip Saji, et al.
0

The numerical solution of continuum damage mechanics (CDM) problems suffers from critical points during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. Displacement-controlled arc-length methods were developed to address these challenges, but are currently applicable only to geometrically non-linear problems. In this work, we present a novel displacement-controlled arc-length (DAL) method for CDM problems in both local damage and non-local gradient damage versions. The analytical tangent matrix is derived for the DAL solver in both of the local and the non-local models. In addition, several consistent and non-consistent implementation algorithms are proposed, implemented, and evaluated. Unlike existing force-controlled arc-length solvers that monolithically scale the external force vector, the proposed method treats the external force vector as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. Such a flexible approach renders the proposed solver to be substantially more efficient and versatile than existing solvers used in CDM problems. The considerable advantages of the proposed DAL algorithm are demonstrated against several benchmark 1D problems with sharp snap-backs and 2D examples with various boundary conditions and loading scenarios, where the proposed method drastically outperforms existing conventional approaches in terms of accuracy, computational efficiency, and the ability to predict the complete equilibrium path including all critical points.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset