A new family of second order convergent weakly-compressible SPH schemes
Despite the many advances in the use of weakly-compressible smoothed particle hydrodynamics (SPH) for the simulation of incompressible fluid flow, it is still challenging to obtain second-order convergence numerically. In this paper we perform a systematic numerical study of convergence and accuracy of kernel-based approximation, discretization operators, and weakly-compressible SPH (WCSPH) schemes. We explore the origins of the errors and issues preventing second-order convergence. Based on the study, we propose several new variations of the basic WCSPH scheme that are all second-order accurate. Additionally, we investigate the linear and angular momentum conservation property of the WCSPH schemes. Our results show that one may construct accurate WCSPH schemes that demonstrate second-order convergence through a judicious choice of kernel, smoothing length, and discretization operators in the discretization of the governing equations.
READ FULL TEXT