A new method for parameter estimation in probabilistic models: Minimum probability flow

07/17/2020
by   Jascha Sohl-Dickstein, et al.
0

Fitting probabilistic models to data is often difficult, due to the general intractability of the partition function. We propose a new parameter fitting method, Minimum Probability Flow (MPF), which is applicable to any parametric model. We demonstrate parameter estimation using MPF in two cases: a continuous state space model, and an Ising spin glass. In the latter case it outperforms current techniques by at least an order of magnitude in convergence time with lower error in the recovered coupling parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset