A nonparametric two-sample conditional distribution test

10/15/2022
by   Jian Yan, et al.
0

Testing the equality of two conditional distributions is at the core of many modern applications such as domain adaption, transfer learning, and algorithmic fairness. However, to our surprise, little effort has been paid to studying this fundamental problem. In this paper, we contribute to the scarce literature by developing a new two-sample measure named conditional energy distance (CED) to quantify the discrepancy between two conditional distributions without imposing restrictive parametric assumptions. We study the fundamental properties of CED and apply CED to construct a two-sample test for the equality of two conditional distributions. A local bootstrap is developed to approximate the finite sample distribution of the test statistic. The reliable performance of the proposed two-sample conditional distribution test is demonstrated through simulations and a real data analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset