A Novel Deep Learning Method for Textual Sentiment Analysis

02/23/2021
by   Hossein Sadr, et al.
0

Sentiment analysis is known as one of the most crucial tasks in the field of natural language processing and Convolutional Neural Network (CNN) is one of those prominent models that is commonly used for this aim. Although convolutional neural networks have obtained remarkable results in recent years, they are still confronted with some limitations. Firstly, they consider that all words in a sentence have equal contributions in the sentence meaning representation and are not able to extract informative words. Secondly, they require a large number of training data to obtain considerable results while they have many parameters that must be accurately adjusted. To this end, a convolutional neural network integrated with a hierarchical attention layer is proposed which is able to extract informative words and assign them higher weight. Moreover, the effect of transfer learning that transfers knowledge learned in the source domain to the target domain with the aim of improving the performance is also explored. Based on the empirical results, the proposed model not only has higher classification accuracy and can extract informative words but also applying incremental transfer learning can significantly enhance the classification performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset