A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing

05/16/2017
by   Dat Quoc Nguyen, et al.
0

We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms the state-of-the-art neural network-based Stack-propagation model for joint POS tagging and transition-based dependency parsing, resulting in a new state of the art. Our code is open-source and available together with pre-trained models at: https://github.com/datquocnguyen/jPTDP

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset