A Novel Technique of Noninvasive Hemoglobin Level Measurement Using HSV Value of Fingertip Image
Over the last decade, smartphones have changed radically to support us with mHealth technology, cloud computing, and machine learning algorithm. Having its multifaceted facilities, we present a novel smartphone-based noninvasive hemoglobin (Hb) level prediction model by analyzing hue, saturation and value (HSV) of a fingertip video. Here, we collect 60 videos of 60 subjects from two different locations: Blood Center of Wisconsin, USA and AmaderGram, Bangladesh. We extract red, green, and blue (RGB) pixel intensities of selected images of those videos captured by the smartphone camera with flash on. Then we convert RGB values of selected video frames of a fingertip video into HSV color space and we generate histogram values of these HSV pixel intensities. We average these histogram values of a fingertip video and consider as an observation against the gold standard Hb concentration. We generate two input feature matrices based on observation of two different data sets. Partial Least Squares (PLS) algorithm is applied on the input feature matrix. We observe R2=0.95 in both data sets through our research. We analyze our data using Python OpenCV, Matlab, and R statistics tool.
READ FULL TEXT