A posteriori analysis for a mixed FEM discretization of the linear elasticity spectral problem
In this paper we analyze a posteriori error estimates for a mixed formulation of the linear elasticity eigenvalue problem. A posteriori estimators for the nearly and perfectly compressible elasticity spectral problems are proposed. With a post-process argument, we are able to prove reliability and efficiency for the proposed estimators. The numerical method is based in Raviart-Thomas elements to approximate the pseudostress and piecewise polynomials for the displacement. We illustrate our results with numerical tests.
READ FULL TEXT