A projection based approach for interactive fixed effects panel data models

01/27/2022
by   Georg Keilbar, et al.
0

This paper presents a new approach to estimation and inference in panel data models with interactive fixed effects, where the unobserved factor loadings are allowed to be correlated with the regressors. A distinctive feature of the proposed approach is to assume a nonparametric specification for the factor loadings, that allows us to partial out the interactive effects using sieve basis functions to estimate the slope parameters directly. The new estimator adopts the well-known partial least squares form, and its √(NT)-consistency and asymptotic normality are shown. Later, the common factors are estimated using principal component analysis (PCA), and the corresponding convergence rates are obtained. A Monte Carlo study indicates good performance in terms of mean squared error. We apply our methodology to analyze the determinants of growth rates in OECD countries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset