A pseudospectral method for investigating the stability of linear population models with two physiological structures

03/22/2022
by   Alessia andò, et al.
0

The asymptotic stability of the null equilibrium of a linear population model with two physiological structures formulated as a first-order hyperbolic PDE is determined by the spectrum of its infinitesimal generator. We propose an equivalent reformulation of the problem in the space of absolutely continuous functions in the sense of Carathéodory, so that the domain of the corresponding infinitesimal generator is defined by trivial boundary conditions. Via bivariate collocation, we discretize the reformulated operator as a finite-dimensional matrix, which can be used to approximate the spectrum of the original infinitesimal generator. Finally, we provide test examples illustrating the converging behavior of the approximated eigenvalues and eigenfunctions, and its dependence on the regularity of the model coefficients.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset