A Quantitative Functional Central Limit Theorem for Shallow Neural Networks
We prove a Quantitative Functional Central Limit Theorem for one-hidden-layer neural networks with generic activation function. The rates of convergence that we establish depend heavily on the smoothness of the activation function, and they range from logarithmic in non-differentiable cases such as the Relu to √(n) for very regular activations. Our main tools are functional versions of the Stein-Malliavin approach; in particular, we exploit heavily a quantitative functional central limit theorem which has been recently established by Bourguin and Campese (2020).
READ FULL TEXT